

www.atarc.org | info@atarc.org

Advanced Technology Academic Research Center

White Paper

Reducing Cyber Attack Risks
Within Software Development
Lifecycle Management

ATARC Software Factory Working Group

September 2023

Copyright © ATARC 2023

http://www.atarc.org/

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 1

Acknowledgements
ATARC would like to take this opportunity to recognize the following Software Factory
Working Group members for their contributions:

Stephen King, Internal Revenue Service (IRS)
Annette Mitchell, Internal Revenue Service (IRS)
Nicholas Weekes, Internal Revenue Service (IRS)
Dennis Jerome, Internal Revenue Service (IRS)
Claire Bailey, Veracode
Eric Florence, Veracode
David Wray, Microfocus
John Cavanaugh, Internet Infrastructure Services Corporation
Robert Ficcaglia, Cloud Native Computing Foundation (CNCF)
Al Nieves, Aqua Security
Jean-Paul Bergeaux, Guidepoint
Hasan Yasar, Software Engineering Institute | Carnegie Mellon University
Brian Gallagher, CodeLock, Inc.

Table of Contents

Introduction……2
Accepted Deployment Patterns……………………………………………………………………………………….2
Overview of Recent Software Supply Chain Attacks and Risk ……………………….…………..3
 Attack Vectors During the Software Development Process…………………………….5

Recent Software Attacks ………………………………………………………………………………………6
Unique Government Software Development Challenges …………………………………………… 7
Industry and Government Recommendations and Frameworks …………………………………9

SLSA………11
Heroku Framework ………………………………………………………………………………………………13

 Authority to Operate ……………………………………………………………………………………………15
 Secure Software Development Innovations….………………………………………………….16
Strategies to Improve Resilience in the Software Development Process ………………..18
Matrix of Potential Threats, Security Controls, and Steps …………………………………………19
Summary ……..21
Appendix.………....21

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 2

Introduction

Increasing cyber-attacks necessitate security improvement and vulnerability reductions
to minimize the threats and provide continued government operations. This paper
explores cyber risks in the software development process.

We will look at the potential risks and widespread consequences of recent cyber-
attacks on the software we use. We’ll also discuss strategies and practical steps that
can be taken to enhance security when developing and implementing software in
government organizations.

Accepted Deployment Patterns

Government entities can leverage existing platforms that will provide secured
deployment environments. For example, FedRAMP provides a pre-approved
methodology and Authority to Operate (ATO) for software that has met the FedRAMP
security requirements.
Additional software development lifecycle application types for Federal Government
include:
• General Service Administration GSA FedRAMP AppV (Authorized Vendor)
• GSA FedRAMP modification
• Direct Vendor Purchase
• Direct Vendor Product Modification
• Internal Development Government off the Shelf (GOTs)
• Internal Development with 3rd Party resources

Government may have both on-premesis and cloud software development
environments. The best practices for secured software development should require a
differentiation of services and components. There are software development services
and software development components for which industry must comply through
automation.

There are also specific security standards for services provided by industry, including
CISA standard for the software supply chain and the software supply chain maturity
model. Across federal government, there are multiple compliance requirements that
exist today. Each entity, whether public or industry software, must refer to the

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 3

compliance guidelines and comply as required. The overall goal is to not recreate
additional guidelines, but to consolidate for maximum security compliance.

Automation can no longer be viewed as an optional feature; it is now a must. The
increased demand for secure code deployment has led both businesses and
government organizations to realize that relying simply on manual processes is no
longer sufficient to meet the growing need for secure code deployment. Embracing
automation has the potential to significantly decrease the time needed to obtain
authorization. On the other hand, using manual procedures frequently causes the
Authority To Operate (ATO) period to be far longer than is acceptable.

Overview of Recent Software Supply Chain Attacks and
Risks

Threat actors are highly skilled at getting beyond cybersecurity safeguards by hacking
into networks and using customer-facing applications and APIs to get important data.
Potential assaults now encompass more than just concentrating on network-
connected gadgets. It now includes all the software-related flaws and vulnerabilities
that are present but unresolved in a company's software portfolio. In other words, the
danger extends beyond hardware and includes unresolved problems with the software
a company utilizes.

Adversaries use attack campaigns for access, espionage, and destruction. They target
software supply chains to gain stealthy and persistent access to secured systems and
networks. These attacks enable operations ranging from the targeting of specific
victims to indiscriminate attacks on connected networks and critical infrastructure.
Software supply chain assaults can be used for data alteration or destruction as well
as espionage, which involves the covert collection of sensitive information. These
attacks create a perilous scenario where access for future attacks is established in a
manner that is challenging to detect. In essence, they not only compromise immediate
security but also pave the way for subsequent, hard-to-spot intrusions. Improved
cybersecurity policies across most networks and computers have made software
supply chain attack vectors increasingly attractive because many software
development and distribution channels lack sufficient protections. There can be
software flaws and vulnerabilities in all software, ranging from First (1st) party
software, open-source, containers, and Infrastructure as code (AC).

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 4

Table 1

Government utilizes multiple software environments based on the classification of data
and the end user accessing the system. The Department of Defense (DoD) and intelligence
community requires information classification applications ranging from public to top
secret data, thus requiring stringent application security measures. For cloud services, this
translates to FedRAMP Moderate for Impact Level 2 and High and for IL4 and IL5
platforms. A citizen facing system may not require highly secure processing platforms. In
addition to platforms, Government may choose to develop software and write programs
internally with government employees or system integrators. Government may choose to
leverage low-code no-code services with integration to government databases or they
may use a custom off-the-shelf solution. Application security is required regardless of the
platforming or security requirements. Government services must always continually secure
their software development lifecycle.

The question posed to Government agencies is “How does Government address the risk,
understand attack vectors, and implement secure application development practices to
meet today’s cybersecurity threats?” Table 11 summarizes the Software Supply chain
Attacks and how flaws/vulnerability could be detected at different points in the software
delivery process.

1 https://www.dni.gov/files/NCSC/documents/supplychain/Software-Supply-Chain-Attacks.pdf

https://www.dni.gov/files/NCSC/documents/supplychain/Software-Supply-Chain-Attacks.pdf

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 5

Attack Vectors During the Software Development Process
In Veracode’s State of Software Security report, where 759,000+ applications were
scanned throughout 2022, the application flaw/vulnerability attack surface is
prevalent. Tables 22 and 33 showcase that flaws exist and must be remediated
regardless of the industry.

In summary, industry data indicates variables of application security scanning and can
identify different types of flaws and vulnerabilities. By embedding a quality gate within
the software development process, entities can detect vulnerabilities within the
DevSecOps pipelines versus in production environments.

A recognizable pattern in the occurrence of
faults within various sectors is revealed
using a thorough statistical analysis
covering a large volume of code. It is
interesting to observe that the public sector
takes the top spot, with a significant 81.9%
incidence of faults, of which a noteworthy
77.4% fall under the OWASP Top 10
vulnerabilities. This percentage of defects
emerges as a dramatic illustration of the
hazards associated with modern federal

services when combined with the recognized attack vectors that target the Federal
Government. This information highlights the urgent need for increased security and
monitoring inside government activities.

2 https://info.veracode.com/report-state-of-software-security-2023.html

3 https://www.sonatype.com/hubfs/8th%20Annual%20SSCR%20-%202023.pdf

Table 2: Flaw Prevalence Per Sector

Table 3

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 6

Recent Software Attacks
High profile industry software attacks are indicators of the criticality of securing the
software supply chain. Examples of recent attacks include:
● Chinese Intelligence Attack, July 20234: Chinese intelligence hacked into Microsoft

email accounts belonging to two dozen government agencies, including the State
Department.

● W4SP Copycats Continue to Infiltrate PyPi (Python Package Index) Registry, March
20235: A series of malicious packages uploaded to the PyPi registry have been
identified as information stealers resembling the popular W4SP stealer. These
copycats pose a serious threat to developers who may inadvertently install them,
compromising the open-source software supply chain.

● Microsoft-Helper Package Reveals Copycat Info-Stealer March 20234: The
Microsoft-helper package on PyPi is a malicious package designed to deploy
malware when developers run pip install. It downloads a remote script containing a
second-stage payload, which exfiltrates sensitive information through a Discord
webhook.

● Open AI Data Breach Traced to Unpatched Redis Vulnerability, March 20234: An
unpatched software bug/vulnerability in an open-source component called Redis
led to a data breach at Open AI. The incident exposed subscribers’ payment-related
info and user’ chat queries and resulted in Italy becoming the first Western country
to ban ChatGPT.

● December 20226: Chinese government-linked hackers stole at least $20 million in
COVID-19 relief funds from the U.S. government, including Small Business
Administration loans and unemployment insurance money. The U.S. Secret Service
announced they retrieved half of the stolen funds thus far.

● November 20225: Suspected Chinese-linked hackers carried out an espionage
campaign on public and private organizations in the Philippines, Europe and the
United States since 2021. The attacks used infected USB drives to deliver malware
to the organizations.

4 https://www.cnbc.com/2023/07/12/us-government-emails-compromised-by-china-based-espionage-group.html

5 https://www.sonatype.com/state-of-the-software-supply-chain/introduction

6 https://www.csis.org/programs/strategic-technologies-program/archives/survey-chinese-espionage-united-states-
2000#:~:text=June%202022%3A%20The%20FBI%2C%20National,providers%20since%20at%20least%202020

https://www.cnbc.com/2023/07/12/us-government-emails-compromised-by-china-based-espionage-group.html
https://www.sonatype.com/state-of-the-software-supply-chain/introduction
https://www.csis.org/programs/strategic-technologies-program/archives/survey-chinese-espionage-united-states-2000#:~:text=June%202022%3A%20The%20FBI%2C%20National,providers%20since%20at%20least%202020
https://www.csis.org/programs/strategic-technologies-program/archives/survey-chinese-espionage-united-states-2000#:~:text=June%202022%3A%20The%20FBI%2C%20National,providers%20since%20at%20least%202020

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 7

● June 20225: The FBI, National Security Agency (NSA) and CISA announced that
Chinese state-sponsored hackers targeted and breached major telecommunications
companies and network service providers since at least 2020.

● March 20225: Hackers linked to the Chinese government penetrated the networks
belonging to government agencies of a least six different U.S. states in an
espionage operation. Hackers took advantage of the Log4j vulnerabilities to access
the networks, in addition to several other vulnerable internet-facing web
applications.

Unique Government Software Development Challenges

Government application development relies upon decades of custom software
development. Spanning the decades are a variety of languages, platforms, tools, and
operating systems, thus creating an infinite loop of knowledge to maintain the
software. The impact of technical debt and lack of standardization also impacts
software supply chain risk. The ability to produce software can occasionally become
segmented, resulting in silos, even within a single agency. Different program or project
teams, as well as external support contractors, may exhibit these silos. The many
entities involved in software development may find it difficult to communicate,
collaborate, and coordinate effectively as a result of this fragmentation.

Government application development environments may have few enterprise services
for software developers, DevOps and Security/Operations teams. This creates poor
visibility, governance and monitoring of software security metrics. Lack of centrally
located Open-Source software libraries and tools for CICD Automation impacts the
efficiency and security of the application development. Without standardization and
security assessment of API’s leveraged for inter-agency information sharing, agencies
may not fully comprehend the inherent risk of an unsigned API for a lack of a Software
Bill of Materials to truly understand risk. There should be an automated security
guardrail at every stage of the CICD pipeline.

The Federal Government led by the Executive Office of the President and the Federal
CISO have identified key components to secure the software supply chain. It has been
recognized globally that without securing this critical supply chain, the global economy
is at risk. Multiple executive orders and memorandums address this as our nation

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 8

strives to adopt secure software development. Inherent in that journey to secure
software is the partnership and compliance by industry solutions. CISA (Cybersecurity
and Infrastructure Security Agency) has drafted an attestation form that has currently
been distributed for comment. This attestation will provide both government and
private industry the opportunity to accurately reflect their adherence to government
security standards.
● CISA provides the policy for federal government entities as directed by the

executive office of the president. CISA also enforces compliance with federal
cybersecurity standards.

● GSA provides the procurement path for government entities to purchase software
that has an attestation of meeting government security standards.

● NIST provides the detailed technical requirements and standards for government
software security and secure software development lifecycles.

● Congress enacts laws to require secure software development lifecycles.

Overarching the United States cybersecurity strategy are the executive orders and
guidance from the executive office of the president. The following governing
documents are:
● Executive Order 14028
● CISA Cybersecurity Strategic Plan FY 2024-20267
● President’s Implementation Plan M-22-18
● White House Strategic Software Security Plan8
● NIST Source Code Security Analyzers9
● White House Cybersecurity Strategy10

7 https://www.cisa.gov/sites/default/files/2023-08/FY2024-2026_Cybersecurity_Strategic_Plan.pdf

8 https://www.whitehouse.gov/wp-content/uploads/2023/06/M-23-16-Update-to-M-22-18-Enhancing-Software-
Security.pdf

9 https://www.nist.gov/itl/ssd/software-quality-group/source-code-security-analyzers

10 https://www.whitehouse.gov/wp-content/uploads/2023/07/National-Cybersecurity-Strategy-Implementation-
Plan-WH.gov_.pdf

https://www.whitehouse.gov/wp-content/uploads/2023/06/M-23-16-Update-to-M-22-18-Enhancing-Software-Security.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/06/M-23-16-Update-to-M-22-18-Enhancing-Software-Security.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/07/National-Cybersecurity-Strategy-Implementation-Plan-WH.gov_.pdf
https://www.whitehouse.gov/wp-content/uploads/2023/07/National-Cybersecurity-Strategy-Implementation-Plan-WH.gov_.pdf

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 9

Industry and Government Recommendations and
Frameworks

Critical software systems and the supply chains that deliver them should be designed,
and evaluated, with security considerations relevant to confidentiality, integrity, and
availability. If a critical system has not been initially designed with security at the
forefront, then security assessment and mitigation activities should begin as early as
possible to minimize risk over time. This can be accomplished through the
implementation and standardization of a software development lifecycle. Government
also has the opportunity to leverage GSA secure products through GSA FedRAMP
compliance. This strategy move toward the early integration of security measures is
based on the idea of foresight, which recognizes that resolving weaknesses and
bolstering defenses at the outset helps fend off potentially rising threats and
vulnerabilities as the system evolves.

Government can choose to adopt software development practices and frameworks by
leveraging information sources, standards, and best practices. These are available
through the National Institute of Standards and Technology (NIST), the Common
Criteria ISO/IEC 15408, the Collection of guides from Defense Information Systems
Agency (DISA), Security Technical Implementation Guide (STIG), OASIS SARIF, PCI
SSF, and OWASP ASVS.

When an agency opts to embark on the development or maintenance of their own
software, they not only take on the responsibility but also recognize the associated
risks. This calls for ensuring that the software is developed and kept up to date in a
secure manner. In contrast, using federally endorsed frameworks like FedRAMP offers
a method to risk reduction should an agency decide to purchase software created by
outside parties. These frameworks offer a structured setting that might aid in reducing
potential risks. It emphasizes the need of their proactive oversight and watchful
guardianship that the agency remains the guardian of its risk posture regardless of
whether the software is internally developed or obtained from an outside source.

Executive Order 1402811, titled "Improving the Nation's Cybersecurity," signed by
President Joe Biden on May 12, 2021, aims to enhance the cybersecurity posture of the

11 https://www.govinfo.gov/content/pkg/FR-2021-05-17/pdf/2021-10460.pdf

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 10

United States. While the executive order encompasses various aspects of
cybersecurity, including threat vectors in application lifecycles, it primarily focuses on
improving the nation's overall cybersecurity resilience. Specifically, the impact of
Executive Order 14028 on threat vectors in application lifecycles. The primary focus on
secure software development practices is the adoption of secure software
development practices throughout the application lifecycle. It directs federal agencies
to develop and enforce baseline security standards for software purchased or
developed by the government. These standards address both the design and
implementation of software, ensuring that security considerations are integrated from
the initial stages of development.

Executive Order 14028 aims to strengthen the cybersecurity posture of the United
States, and its impact on threat vectors in application lifecycles is significant. By
emphasizing secure software development practices, supply chain security,
vulnerability disclosure programs, Zero Trust Architecture, and incident response
capabilities, the Executive Order helps reduce the potential threats and vulnerabilities
that can arise during the development, deployment, and maintenance of applications.

There are several software lifecycle management and software development
frameworks that are widely adopted across government. Regardless of methodology
(agile, waterfall, etc.), the most important aspect is to have a secure software delivery
lifecycle.

Key components of a secure software delivery lifecycle are:

1. Requirements and Design: Security considerations are identified and incorporated

into the initial software requirements and design phase. Threat modeling
techniques may be employed to identify potential security risks and define
appropriate security controls.

2. Secure Coding: Developers follow secure coding practices, such as input validation,

output encoding, and secure handling of sensitive data. Secure coding guidelines
and best practices are adhered to in order to minimize vulnerabilities.

3. Testing and Verification: Security testing is conducted throughout the

development lifecycle. This includes activities such as static code analysis, dynamic
application security testing (DAST), penetration testing, and vulnerability scanning.

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 11

These tests help identify security weaknesses and vulnerabilities that need to be
addressed.

4. Security Review and Assessment: A formal security review is conducted to assess

the security posture of the software. This may involve external security experts or
internal security teams reviewing the architecture, code, and configuration for
potential vulnerabilities.

5. Deployment and Operations: Security controls, such as access controls,

encryption, and logging, are implemented during deployment and operation
phases. Regular monitoring and incident response capabilities are established to
detect and respond to security incidents.

6. Maintenance and Updates: The software is regularly updated and patched to

address newly discovered security vulnerabilities. Security updates are deployed
promptly to ensure the ongoing security of the software.

The Software Security Development Lifecycle (SSDLC) aims to integrate security
considerations throughout the entire software development process rather than
treating security as an afterthought. By incorporating security from the early stages,
organizations can reduce the likelihood of security breaches and deliver software that
meets high-security standards.

SLSA
Supply-chain Levels for Software Artifacts, or SLSA12 ("salsa") is a security framework,
a checklist of standards and controls to prevent tampering, improve integrity, and
secure packages and infrastructure. SLSA is a set of incrementally adoptable
guidelines for supply chain security, established by industry consensus. Producers can
follow SLSA’s guidelines to make their software supply chain more secure, and
consumers can use SLSA to make decisions about whether to trust a software
package.

12 https://slsa.dev/spec/v1.0/

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 12

SLSA provides:
• A common vocabulary to talk about software supply chain security
• A way to secure your incoming supply chain by evaluating the trustworthiness

of the artifacts you consume
• An actionable checklist to improve your own software’s security
• A way to measure your efforts toward compliance

SLSA provides protection against tampering along the supply chain to consumers,
both reducing insider risk and increasing confidence that the software produced
reaches consumers as intended.

Software consumers, such as a development team using open source packages, a
government agency using vendored software, or a CISO judging organizational risk use
SLSA as a way to judge the security practices of the software they rely on and the
integrity of that software. Adoption of SLSA enables a secure software supply chain
between Infrastructure providers, who provide infrastructure such as an ecosystem
package manager, build platform, or CI/CD platform and software consumers.

A SLSA track focuses on a particular aspect of a supply chain, such as the Build Track.
SLSA v1.0 consists of only a single track (build), but future versions of SLSA will add
tracks that cover other parts of the software supply chain, such as how source code is
managed.
Within each track, ascending levels indicate increasingly hardened security practices.
Higher levels provide better guarantees against supply chain threats but come at
higher implementation costs. Lower SLSA levels are designed to be easier to adopt,
but with only modest security guarantees. SLSA 0 is sometimes used to refer to
software that doesn’t yet meet any SLSA level. Currently, the SLSA Build Track
encompasses Levels 1 through 3, but higher levels will be possible in future revisions.

The combination of tracks and levels offers an easy way to discuss whether software
meets a specific set of requirements. By referring to an artifact as meeting SLSA Build
Level 3, for example, you’re indicating in one phrase that the software artifact was
built following a set of security practices that industry leaders agree protect against
supply chain compromises.

SLSA’s framework addresses every step of the software supply chain - the sequence
of steps resulting in the creation of an artifact. SLSA represents a supply chain as a

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 13

collection of sources, builds, dependencies, and packages. One artifact’s supply chain
is a combination of its dependencies’ supply chains plus its own sources and builds.

There are several areas outside SLSA’s current framework that are important to
consider together with SLSA such as:
• Code quality: SLSA does not tell if secure coding practices were followed when

writing the code.
• Producer trust: SLSA does not address organizations that intentionally produce

malicious software, but it can reduce insider risks within a trusted organization.
SLSA’s Build Tract protects against tampering during or after the build, and future
SLSA tracks intend to protect against unauthorized modifications of source code
and dependencies.

• Transitive trust for dependencies: The SLSA level of an artifact is independent of
the level of its dependencies. SLSA can be used recursively to judge an artifact’s
dependencies on their own, but there is currently no single SLSA level that applies
to both an artifact and its transitive dependencies together.

Heroku Framework
The uniform implementation of a standard application development framework is
essential to the notion of secure software development, whether it is applied to on-
premises infrastructures or cloud platforms. This strategy makes sure that the source
code possesses security features that go beyond the underlying platform, allowing it
to function securely across a wide range of contexts. A unified security posture is
embodied in the seamless portability of software across platforms.

The Heroku framework, a cloud application platform, has both positive and negative
impacts on application security. Here are some ways in which the Heroku framework
can impact application security:

1. Infrastructure Security: Heroku provides a secure infrastructure for hosting
applications. It manages the underlying infrastructure, including servers, networks, and
data centers, which can help mitigate certain security risks associated with managing
infrastructure on-premises. Heroku's infrastructure is designed to be highly available,
scalable, and resilient, which can contribute to the overall security of the hosted applications.

2. Platform Security: Heroku takes care of platform-level security measures, such as
securing the operating system, patching vulnerabilities, and managing network
security. This helps protect applications from common security threats that target the
underlying platform. Heroku also ensures compliance with industry standards and

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 14

regulations, which can be beneficial for applications that have specific security
requirements.

3. Access Control and Authentication: Heroku provides access control mechanisms to
manage user access to applications and resources. It supports various authentication
methods, including multi-factor authentication (MFA), OAuth, and identity providers
like Okta and Active Directory. These features help enforce proper access controls and
reduce the risk of unauthorized access to applications and sensitive data.

4. Application Isolation: Heroku uses a container-based architecture to isolate
applications from one another. Each application runs in its own isolated environment,
which helps prevent cross-application attacks and limits the impact of security
breaches. This isolation provides an additional layer of security for applications hosted
on the Heroku platform.

5. Secure Deployment: Heroku provides secure deployment mechanisms that ensure
the integrity and authenticity of application updates. It supports version control
systems like Git and provides secure deployment options, such as encrypted
connections (HTTPS) and secure shell (SSH) access. These features help protect
applications during the deployment process and reduce the risk of unauthorized code
changes or tampering.

Despite these advantages, it's important to stress that the field of application security
is a joint effort that goes beyond the limitations of any single institution. Within this
context, a mutually beneficial cooperation develops between the Heroku platform and
the application developers, with each party sharing responsibility for bolstering the
software's defenses. Developers need to implement secure coding practices, conduct
regular security testing, and address application-specific vulnerabilities. Additionally,
while Heroku provides a secure environment, the security of the application itself,
including the code, data handling, and user authentication, remains the responsibility
of the application owner.

In summary, the Heroku framework can positively impact application security by
providing a secure infrastructure, managing platform-level security, enforcing access
controls, isolating applications, and offering secure deployment options. However,
developers and application owners must also take proactive measures to ensure the
security of their applications within the Heroku environment.

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 15

Authority to Operate
The National Institute of Standards and Technology13 (NIST) Risk Management
Framework (RMF) enables the Authority to Operate (ATO) process, which is a
framework used to assess and authorize the operation of information systems and
applications within federal agencies. The ATO process has several impacts on
application security and software development:

1. Security Compliance: The ATO process requires applications to comply with a set of
security controls and guidelines defined by NIST, such as the NIST Special Publication
800-53. These controls cover various aspects of application security, including access
control, encryption, vulnerability management, incident response, and more. As a
result, the ATO process drives the adoption of security best practices and ensures that
applications meet the required security standards.

2. Risk Assessment: The ATO process involves a comprehensive risk assessment of
the application. This assessment identifies potential vulnerabilities, threats, and risks
associated with the application's design, development, and operational aspects.
Through this process, security weaknesses and gaps can be identified and addressed,
leading to improved application security.

3. Security Testing and Evaluation: As part of the ATO process, applications undergo
rigorous security testing and evaluation. This includes vulnerability scanning,
penetration testing, code review, and other security assessments. These tests help
identify vulnerabilities, weaknesses, and potential attack vectors within the application.
By uncovering these issues, developers can rectify them and enhance the overall
security posture of the application.

4. Secure Software Development Lifecycle (SDLC): The ATO process promotes the
adoption of a secure software development lifecycle (SDLC) methodology. It
encourages developers to integrate security considerations throughout the entire
software development process, from requirements and design to deployment and
maintenance. This includes secure coding practices, threat modeling, code reviews, and

13 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 16

security testing at various stages. As a result, the ATO process helps foster a culture of
security-conscious software development.

5. Continuous Monitoring and Compliance: Once an application receives an ATO, it is
subject to continuous monitoring and compliance requirements. This entails regular
security assessments, vulnerability scanning, log analysis, and incident response
activities. By continuously monitoring the application's security posture, vulnerabilities
and security incidents can be promptly detected and addressed, thereby ensuring
ongoing application security.

Overall, the Agency Authority to Operate (ATO) process has a significant impact on
application security and software development. It drives compliance with security
standards, promotes risk assessment and mitigation, encourages the adoption of
secure SDLC practices, and enforces continuous monitoring and compliance. By
following the ATO process, organizations can enhance the security of their applications
and mitigate potential risks and vulnerabilities throughout the software development
lifecycle.

Secure Software Development Innovations
There are several secure software development frameworks available that provide
guidelines, best practices, and methodologies to develop secure applications. Here are
three popular frameworks and how they differentiate from one another:

1. Microsoft Secure Development Lifecycle (SDL): The Microsoft SDL is a framework
developed by Microsoft to integrate security practices into the software development
process. It consists of a set of security-focused activities and practices that cover the
entire software development lifecycle. The SDL emphasizes threat modeling, code
analysis, secure coding practices, security testing, and security training for developers.
It provides specific guidance and tools tailored for Microsoft technologies and
platforms. The SDL is known for its comprehensive approach to application security
and its integration with Microsoft development tools.

2. Open Web Application Security Project (OWASP) Software Assurance Maturity
Model (SAMM): The OWASP SAMM is an open framework that helps organizations
assess, formulate, and implement a strategy for software security. It provides a
maturity model that guides organizations through different levels of maturity in
building secure software. The SAMM framework covers various domains, including
governance, design, implementation, verification, and operations. It emphasizes the

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 17

importance of security culture, risk assessment, secure architecture, security testing,
and secure deployment practices. The SAMM framework is technology-agnostic and
can be applied to different software development environments.

3. Building Security in Maturity Model (BSIMM): The BSIMM is a framework that
focuses on software security initiatives within organizations. It is a descriptive model
that captures the activities, practices, and measurements of real-world software
security initiatives. The BSIMM framework is based on data collected from various
organizations and provides a benchmark for software security practices. It consists of a
set of 12 security practices grouped into four domains: governance, intelligence, secure
software development lifecycle, and deployment. The BSIMM framework helps
organizations understand and improve their software security maturity based on
industry-proven practices.

These frameworks differentiate from one another in several ways:

• Scope: Each framework may have a different focus and scope. For example, the
Microsoft SDL primarily targets Microsoft technologies, while OWASP SAMM
and BSIMM are more technology-agnostic and can be applied to various
software development environments.

• Approach: The frameworks may have different approaches to software security.
For instance, the SDL emphasizes secure coding practices and integration with
Microsoft development tools, while OWASP SAMM focuses on overall software
security strategy and maturity levels. BSIMM captures real-world practices and
provides a benchmark for software security initiatives.

• Guidance and Tools: The frameworks may provide different guidance, best
practices, and tools. For example, the SDL offers specific guidance and tools for
Microsoft technologies, while OWASP SAMM provides a broader set of
guidelines applicable to different technologies and platforms.

• Maturity Model: The frameworks may differ in their maturity models and how
they assess and measure software security maturity. OWASP SAMM and
BSIMM both provide maturity models, but they may have different domains,
activities, and measurements.

• Application Security Posture/Score: Industry through automation can now
assess the overall security posture of the application. Whether the application is
in development or in production, industry tools can spotlight the security
vulnerabilities and assess the impact to agency operations. Industry can also
provide automation in the remediation process based on machine learning and
artificial intelligence.

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 18

It is important to note that these frameworks are not mutually exclusive, and
organizations can choose to adopt multiple frameworks based on their specific needs
and requirements. The selection of a framework depends on factors such as the
organization's technology stack, development processes, security goals, and resources
available.

Strategies to Improve Resilience in the Software
Development Process

Critical to the success of a secure software development lifecycle is the ability to
understand the root causes of mission and security failure and identify areas for
improvement within the SDLC, CI/CD Automation and tools. Key areas of focus to
secure Design, Development, Test/Validate, Deploy, Maintain/Update functions are:
● Leveraging cloud-based repositories for source code, binaries and DevSecOps build

environments
● Documenting potential attack vectors and mitigating and/or eliminating them
● Promoting enterprise-wide services for DevSecOps for all high-level attack vectors
● Leveraging zero trust and insider threat modeling for developers and IT

administrators
● Improving governance of code, software assurance, open-source governance
● Continuous code signing, credentialing and validation
● New cloud-based service offerings to reduce supply chain threat vectors
● Enterprise Software Assurance, Testing, Source Code Repositories, etc.
● Enterprise Scale Agile Frameworks (SaFE)
● Threat advisory services
● Software signature validation
● Enhanced product capability to support enterprise software development

capabilities
● Support for industry standards for software development standards
● Automation for software build process (must be actionable)
● How software developers use request to initiate new code changes to new code

repositories
● How industry automates the PR analysis to ensure no new software vulnerabilities

are introduced; deployment frequency, code goes through security checks
● 12 factor application14

14 https://12factor.net/

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 19

Threat Vector Examples

Matrix of Potential Threats, Security Controls, and
Steps

The spectrum of threats extends its reach through a myriad of sources and can impact
different components of the software development cycle. We have accumulated a
matrix of the threat vectors and identified security controls which can be implemented
to minimize risk to the agency. The table below identifies two threat vectors, developer
and source code control, which should be immediately addressed.

Threat Vector Security Control

1 Rogue Developer / Employee
Include BG check / others as part of recruitment process (also required by
ISO27001)
Multiple or paired code reviewers required for deployment

2 Suspicious developers’ behavior
Utilize insider threat modeling
Analyze user behavior from endpoint audit logs

3
Developers’ laptop might be
compromised

Laptop must be regularly patched according to MF corporate policy
Full device management (no Local Admin permissions, no removable USB
devices, runtime malware scanning)

4
Uncontrolled SW installed on the
laptop by the developer

Limit the developers’ ability to install uncontrolled SW

5
Uncontrolled/Approved IDEs may
lead to laptop compromise

Define list of approved IDEs
Define policies for an approved IDE

6
Insecure configuration of IDE may
lead to compromise

Verify the security of the IDE (i.e., patches, secure configuration, least
privileges, logging, auto update)
Deploy IDE security plug-ins

7
Uncontrolled code & libs presented
by the developer

Scan source code and libs on the developers’ laptop for vulnerabilities
Scan libs on laptop for non-used libs
Package developers – explicitly declare the dependencies and define a lock file
Avoid fake commits by signing the commit
Build always from source and not from local directory

8
Interface to source control repo
might be vulnerable

Client patch updates and auto update
Secure configuration of client, verify proper encryption, authentication,
authorization, etc.

9 Inability to conduct forensics
Each item above must be configured for proper logging
Centralized audit log infrastructure and applications for correlation and
searching of logs from endpoints, integration with SEIM

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 20

Source Code Control

Threat Vector Security Control

1 Infrastructure related attacks

OS Hardening; patches; NW segmentation; MW scanning; AV; host-based IDS,
etc.
IAM via SSO
Least privileges – who can access, what can they do on the OS level

2
Uncontrolled/Approved
source code repos may lead
to compromise

Define list of approved source code repos
Define requirements & Policy for an approved source code repo
Ensure all source code repos have immutable logs and transactions and are being
monitored for malicious activity

3
Insecure configuration of
source code repo may lead to
compromise

Verify the security of the source code repo (i.e., patches, secure configuration,
least privileges, logging, auto update)
Define proper authorization, authentication, least privileges concept (Zero Trust)
Access via VPN only / use 2FA and continuous identity evaluation
Enable access only via SSO/SAML
Disable usage of ‘shared’ accounts

4
Insecure code may lead to
compromise

Force code review (no self) as condition for push (gap: training on what to look for
– i.e., source of code; backdoors, source from non-approved, manifest file
changes?)
Deploy scanners from feature branch as well as master branch: SAST; encoded;
obfuscated; externally originated; MW; behavioral (Old code, dormant developer,
etc…);
Manifest files must have explicit permissions and auditing for every change

5
Insecure interfaces to/from
source control repo might be
vulnerable

Define secure interface from “source code control” to push/pull to “automation
server/build machine” i.e., specific token, encryption, authentication, authorization,
logging, auto update, etc.
Enable token renewal

6 Inability to conduct forensics Each item above must be configured for proper logging to a SEIM

7
Lack of government might
lead to system compromise

Conduct PT/security assessment on the source control at defined cadence – TBD
(cadence and funding)

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 21

Summary

Our recommendation is to require enterprise approaches to DevSecOps services. To do
this, you must have a secure platform for your enterprise artifacts, your enterprise
source code controls, and leverage enterprise orchestrated and automated services.
These automated services must address the application build process, enterprise
threat mitigation assessment, and security testing.

Functional and performance testing must be performed on every build deployment and
must meet your agency’s risk profile. Every build must perform static testing, dynamic
testing, and code coverage testing. Testing and provisioning should leverage
deployment scripts Infrastructure as Code (IACs). Depending upon the infrastructure
for the platform, secure enterprise cloud templates and secure cloud deployment
should address your agency environment. For example, Kubernetes space
deployments and the security required.

Appendix

For further information, consider the following references contained within NIST’s
documentation on:
• SSDF and C-SRCM.
• NIST: Mitigating the Risk of Software Vulnerabilities by Adopting a Secure

Software
• Development Framework (SSDF)
• BSIMM: Building Security in Maturity Model (BSIMM) Version 11
• BSA: The BSA Framework for Secure Software: A New Approach to Securing the

Software
• Lifecycle, Version 1.1
• Institute for Defense Analyses (IDA): State-of-the-Art Resources (SOAR) for

Software
• Vulnerability Detection, Test, and Evaluation
• International Organization for Standardization/International Electrotechnical

Commission
• (ISO/IEC): Information technology – Security techniques – Application security –

Part 1: Overview and concepts, ISO/IEC 27034-1:2011
• Microsoft: Microsoft Security Development Lifecycle
• NIST: Framework for Improving Critical Infrastructure Cybersecurity, Version 1.1

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 22

• NIST: SP 800-53 Rev. 5, Security and Privacy Controls for Information Systems and
Organizations

• NIST: SP 800-160 Vol. 1, Systems Security Engineering: Considerations for a
Multidisciplinary

• Open Web Application Security Project (OWASP): OWASP Application Security
Verification Standard 4.0.2

• OWASP: Software Assurance Maturity Model Version 1.5
• Payment Card Industry (PCI) Security Standards Council: Secure Software Lifecycle

(Secure
SLC)

• Requirements and Assessment Procedures Version 1.1
• Software Assurance Forum for Excellence in Code (SAFECode): Fundamental

Practices for Secure Software Development: Essential Elements of a Secure
Development Lifecycle

• Program, Third Edition
• SAFECode: Managing Security Risks Inherent in the Use of Third-Party

Components
• SAFECode: Practical Security Stories and Security Tasks for Agile Development

Environments
• SAFECode: Software Integrity Controls: An Assurance-Based Approach to

Minimizing Risks in the Software Supply Chain
• SAFECode: Tactical Threat Modeling

Additional Resources:
• Reasonable Accommodation Act Section 508

https://www.cisa.gov/sites/default/files/publications/defending_against_softwar
e_supply_chain_attacks_508_1.pdf

• Secure software development framework (SSDF)
• NIST Cyber Supply Chain Risk Management Framework (C-SCRM) and the Secure

Software Development Framework (SSDF)
• Build Security In Maturity Model (BSIMM) & CMMI, Open Web Application Security

Project (OWASP)
• FITARA Scoring
• Veracode 2023 Annual Report on the State of Application Security -

https://info.veracode.com/report-state-of-software-security-2023.html
• Veracode State of Software Report by Sectors -

https://www.veracode.com/sites/default/files/pdf/resources/reports/veracode-state-
of-software-security-2023-public-sector.pdf

https://www.cisa.gov/sites/default/files/publications/defending_against_software_supply_chain_attacks_508_1.pdf
https://www.cisa.gov/sites/default/files/publications/defending_against_software_supply_chain_attacks_508_1.pdf
https://www.bsimm.com/
https://info.veracode.com/report-state-of-software-security-2023.html
https://www.veracode.com/sites/default/files/pdf/resources/reports/veracode-state-of-software-security-2023-public-sector.pdf
https://www.veracode.com/sites/default/files/pdf/resources/reports/veracode-state-of-software-security-2023-public-sector.pdf

WHITE PAPER: Reducing Risk Within Software Development Lifecycle Management

 Page 23

Disclaimer: This document was prepared by the members of the ATARC Software Factory Working
Group in their personal capacity. The opinions expressed do not reflect any specific individual nor
any organization or agency they are affiliated with, and shall not be used for advertisement or
product endorsement purposes.

